extension | φ:Q→Aut N | d | ρ | Label | ID |
(C22×C8).1C22 = C23⋊C16 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).1C2^2 | 128,46 |
(C22×C8).2C22 = C23.M4(2) | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).2C2^2 | 128,47 |
(C22×C8).3C22 = C22.M5(2) | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).3C2^2 | 128,54 |
(C22×C8).4C22 = C23.7M4(2) | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).4C2^2 | 128,55 |
(C22×C8).5C22 = C24.51(C2×C4) | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).5C2^2 | 128,512 |
(C22×C8).6C22 = C24.155D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).6C2^2 | 128,519 |
(C22×C8).7C22 = C24.65D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).7C2^2 | 128,520 |
(C22×C8).8C22 = C42.425D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).8C2^2 | 128,529 |
(C22×C8).9C22 = C42.95D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).9C2^2 | 128,530 |
(C22×C8).10C22 = C42.98D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).10C2^2 | 128,534 |
(C22×C8).11C22 = C42.99D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).11C2^2 | 128,535 |
(C22×C8).12C22 = C42.100D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).12C2^2 | 128,536 |
(C22×C8).13C22 = C42.101D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).13C2^2 | 128,537 |
(C22×C8).14C22 = C23.32M4(2) | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).14C2^2 | 128,549 |
(C22×C8).15C22 = C24.53(C2×C4) | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).15C2^2 | 128,550 |
(C22×C8).16C22 = C23.36D8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).16C2^2 | 128,555 |
(C22×C8).17C22 = C24.157D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).17C2^2 | 128,556 |
(C22×C8).18C22 = C24.69D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).18C2^2 | 128,557 |
(C22×C8).19C22 = C42⋊8C8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).19C2^2 | 128,563 |
(C22×C8).20C22 = C42.23Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).20C2^2 | 128,564 |
(C22×C8).21C22 = C42⋊5C8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).21C2^2 | 128,571 |
(C22×C8).22C22 = C42⋊4C4.C2 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).22C2^2 | 128,572 |
(C22×C8).23C22 = C42⋊9C8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).23C2^2 | 128,574 |
(C22×C8).24C22 = C42.25Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).24C2^2 | 128,575 |
(C22×C8).25C22 = C23.21M4(2) | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).25C2^2 | 128,582 |
(C22×C8).26C22 = (C2×C8).195D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).26C2^2 | 128,583 |
(C22×C8).27C22 = M4(2).40D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).27C2^2 | 128,590 |
(C22×C8).28C22 = (C2×D4).Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).28C2^2 | 128,600 |
(C22×C8).29C22 = C23.22M4(2) | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).29C2^2 | 128,601 |
(C22×C8).30C22 = C23⋊2M4(2) | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).30C2^2 | 128,602 |
(C22×C8).31C22 = C24.160D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).31C2^2 | 128,604 |
(C22×C8).32C22 = C24.73D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).32C2^2 | 128,605 |
(C22×C8).33C22 = C23.38D8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).33C2^2 | 128,606 |
(C22×C8).34C22 = C24.74D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).34C2^2 | 128,607 |
(C22×C8).35C22 = (C2×SD16)⋊14C4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).35C2^2 | 128,609 |
(C22×C8).36C22 = (C2×C4)⋊9Q16 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).36C2^2 | 128,610 |
(C22×C8).37C22 = (C2×C4)⋊9D8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).37C2^2 | 128,611 |
(C22×C8).38C22 = (C2×SD16)⋊15C4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).38C2^2 | 128,612 |
(C22×C8).39C22 = M4(2).44D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).39C2^2 | 128,613 |
(C22×C8).40C22 = C4⋊C4⋊3C8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).40C2^2 | 128,648 |
(C22×C8).41C22 = (C2×C8).Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).41C2^2 | 128,649 |
(C22×C8).42C22 = C2.D8⋊4C4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).42C2^2 | 128,650 |
(C22×C8).43C22 = C4.Q8⋊9C4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).43C2^2 | 128,651 |
(C22×C8).44C22 = C4.Q8⋊10C4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).44C2^2 | 128,652 |
(C22×C8).45C22 = C2.D8⋊5C4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).45C2^2 | 128,653 |
(C22×C8).46C22 = C22⋊C4⋊4C8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).46C2^2 | 128,655 |
(C22×C8).47C22 = C23.9M4(2) | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).47C2^2 | 128,656 |
(C22×C8).48C22 = D4⋊C4⋊C4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).48C2^2 | 128,657 |
(C22×C8).49C22 = C4.67(C4×D4) | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).49C2^2 | 128,658 |
(C22×C8).50C22 = C4.68(C4×D4) | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).50C2^2 | 128,659 |
(C22×C8).51C22 = C2.(C4×Q16) | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).51C2^2 | 128,660 |
(C22×C8).52C22 = C42.61Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).52C2^2 | 128,671 |
(C22×C8).53C22 = C42.27Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).53C2^2 | 128,672 |
(C22×C8).54C22 = C42.325D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).54C2^2 | 128,686 |
(C22×C8).55C22 = C42.109D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).55C2^2 | 128,687 |
(C22×C8).56C22 = C42.117D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).56C2^2 | 128,713 |
(C22×C8).57C22 = C42.118D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).57C2^2 | 128,714 |
(C22×C8).58C22 = C42.119D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).58C2^2 | 128,715 |
(C22×C8).59C22 = C42.327D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).59C2^2 | 128,716 |
(C22×C8).60C22 = C42.120D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).60C2^2 | 128,717 |
(C22×C8).61C22 = C42.121D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).61C2^2 | 128,719 |
(C22×C8).62C22 = C42.122D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).62C2^2 | 128,720 |
(C22×C8).63C22 = C42.123D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).63C2^2 | 128,721 |
(C22×C8).64C22 = (C2×C8).2D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).64C2^2 | 128,749 |
(C22×C8).65C22 = (C2×D4)⋊Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).65C2^2 | 128,755 |
(C22×C8).66C22 = (C2×Q8)⋊Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).66C2^2 | 128,756 |
(C22×C8).67C22 = C4⋊C4.84D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).67C2^2 | 128,757 |
(C22×C8).68C22 = C4⋊C4.85D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).68C2^2 | 128,758 |
(C22×C8).69C22 = C24.83D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).69C2^2 | 128,765 |
(C22×C8).70C22 = C24.84D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).70C2^2 | 128,766 |
(C22×C8).71C22 = C24.85D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).71C2^2 | 128,767 |
(C22×C8).72C22 = C24.86D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).72C2^2 | 128,768 |
(C22×C8).73C22 = C4⋊C4⋊7D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).73C2^2 | 128,773 |
(C22×C8).74C22 = C4⋊C4.94D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).74C2^2 | 128,774 |
(C22×C8).75C22 = C4⋊C4.95D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).75C2^2 | 128,775 |
(C22×C8).76C22 = C22⋊C4.7D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).76C2^2 | 128,785 |
(C22×C8).77C22 = (C2×C4)⋊3D8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).77C2^2 | 128,786 |
(C22×C8).78C22 = (C2×C4)⋊5SD16 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).78C2^2 | 128,787 |
(C22×C8).79C22 = (C2×C4)⋊3Q16 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).79C2^2 | 128,788 |
(C22×C8).80C22 = C4⋊C4.106D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).80C2^2 | 128,797 |
(C22×C8).81C22 = (C2×Q8).8Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).81C2^2 | 128,798 |
(C22×C8).82C22 = (C2×C4).23D8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).82C2^2 | 128,799 |
(C22×C8).83C22 = (C2×C8).52D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).83C2^2 | 128,800 |
(C22×C8).84C22 = (C2×C4).24D8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).84C2^2 | 128,803 |
(C22×C8).85C22 = (C2×C4).19Q16 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).85C2^2 | 128,804 |
(C22×C8).86C22 = C42⋊8C4⋊C2 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).86C2^2 | 128,805 |
(C22×C8).87C22 = (C2×Q8).109D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).87C2^2 | 128,806 |
(C22×C8).88C22 = C42.9D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).88C2^2 | 128,812 |
(C22×C8).89C22 = C42.10D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).89C2^2 | 128,830 |
(C22×C8).90C22 = (C2×C4).28D8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).90C2^2 | 128,831 |
(C22×C8).91C22 = (C2×C4).23Q16 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).91C2^2 | 128,832 |
(C22×C8).92C22 = C4⋊C4.Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).92C2^2 | 128,833 |
(C22×C8).93C22 = C22⋊C4.Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).93C2^2 | 128,835 |
(C22×C8).94C22 = C42.694C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).94C2^2 | 128,1711 |
(C22×C8).95C22 = C42.697C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).95C2^2 | 128,1720 |
(C22×C8).96C22 = C42.309C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).96C2^2 | 128,1726 |
(C22×C8).97C22 = C22.SD32 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).97C2^2 | 128,79 |
(C22×C8).98C22 = C23.32D8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).98C2^2 | 128,80 |
(C22×C8).99C22 = C23.12SD16 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).99C2^2 | 128,81 |
(C22×C8).100C22 = C23.13SD16 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).100C2^2 | 128,82 |
(C22×C8).101C22 = C23.37D8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).101C2^2 | 128,584 |
(C22×C8).102C22 = C2.(C4×D8) | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).102C2^2 | 128,594 |
(C22×C8).103C22 = Q8⋊(C4⋊C4) | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).103C2^2 | 128,595 |
(C22×C8).104C22 = C42.29Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).104C2^2 | 128,679 |
(C22×C8).105C22 = C23⋊2D8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).105C2^2 | 128,731 |
(C22×C8).106C22 = C23⋊2Q16 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).106C2^2 | 128,733 |
(C22×C8).107C22 = (C2×C4)⋊2D8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).107C2^2 | 128,743 |
(C22×C8).108C22 = (C22×D8).C2 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).108C2^2 | 128,744 |
(C22×C8).109C22 = (C2×C4)⋊2Q16 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).109C2^2 | 128,748 |
(C22×C8).110C22 = M4(2).4D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).110C2^2 | 128,750 |
(C22×C8).111C22 = M4(2).6D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).111C2^2 | 128,752 |
(C22×C8).112C22 = C4⋊C4.96D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).112C2^2 | 128,777 |
(C22×C8).113C22 = C4⋊C4.98D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).113C2^2 | 128,779 |
(C22×C8).114C22 = C4⋊C4⋊Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).114C2^2 | 128,789 |
(C22×C8).115C22 = C23.12D8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).115C2^2 | 128,807 |
(C22×C8).116C22 = C24.88D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).116C2^2 | 128,808 |
(C22×C8).117C22 = (C2×C8).55D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).117C2^2 | 128,810 |
(C22×C8).118C22 = (C2×C8).1Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).118C2^2 | 128,815 |
(C22×C8).119C22 = (C2×C8).24Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).119C2^2 | 128,817 |
(C22×C8).120C22 = (C2×C4).26D8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).120C2^2 | 128,818 |
(C22×C8).121C22 = (C2×C4).21Q16 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).121C2^2 | 128,819 |
(C22×C8).122C22 = M4(2).Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).122C2^2 | 128,821 |
(C22×C8).123C22 = (C2×C4).27D8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).123C2^2 | 128,825 |
(C22×C8).124C22 = (C2×C8).60D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).124C2^2 | 128,827 |
(C22×C8).125C22 = D8⋊7D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).125C2^2 | 128,916 |
(C22×C8).126C22 = Q16⋊7D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).126C2^2 | 128,917 |
(C22×C8).127C22 = D8.9D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).127C2^2 | 128,919 |
(C22×C8).128C22 = Q16.8D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).128C2^2 | 128,920 |
(C22×C8).129C22 = C22.D16 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).129C2^2 | 128,964 |
(C22×C8).130C22 = C23.49D8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).130C2^2 | 128,965 |
(C22×C8).131C22 = C23.50D8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).131C2^2 | 128,967 |
(C22×C8).132C22 = C23.51D8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).132C2^2 | 128,968 |
(C22×C8).133C22 = C2×C22⋊Q16 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).133C2^2 | 128,1731 |
(C22×C8).134C22 = C2×D4⋊D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).134C2^2 | 128,1732 |
(C22×C8).135C22 = Q8.(C2×D4) | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).135C2^2 | 128,1743 |
(C22×C8).136C22 = C2×C4⋊D8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).136C2^2 | 128,1761 |
(C22×C8).137C22 = C2×D4.2D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).137C2^2 | 128,1763 |
(C22×C8).138C22 = C2×C4⋊2Q16 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).138C2^2 | 128,1765 |
(C22×C8).139C22 = C42.14C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).139C2^2 | 128,1773 |
(C22×C8).140C22 = C42.17C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).140C2^2 | 128,1776 |
(C22×C8).141C22 = C2×D4⋊Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).141C2^2 | 128,1802 |
(C22×C8).142C22 = C2×D4.Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).142C2^2 | 128,1804 |
(C22×C8).143C22 = C2×C4.Q16 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).143C2^2 | 128,1806 |
(C22×C8).144C22 = C42.22C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).144C2^2 | 128,1815 |
(C22×C8).145C22 = C2×C22.D8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).145C2^2 | 128,1817 |
(C22×C8).146C22 = C2×C23.19D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).146C2^2 | 128,1819 |
(C22×C8).147C22 = C2×C23.48D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).147C2^2 | 128,1822 |
(C22×C8).148C22 = (C2×D4).303D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).148C2^2 | 128,1830 |
(C22×C8).149C22 = C23⋊3Q16 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).149C2^2 | 128,1921 |
(C22×C8).150C22 = C24.124D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).150C2^2 | 128,1923 |
(C22×C8).151C22 = C4.172+ 1+4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).151C2^2 | 128,1934 |
(C22×C8).152C22 = C4.182+ 1+4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).152C2^2 | 128,1935 |
(C22×C8).153C22 = C42.293D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).153C2^2 | 128,1977 |
(C22×C8).154C22 = C42.297D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).154C2^2 | 128,1981 |
(C22×C8).155C22 = C42.298D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).155C2^2 | 128,1982 |
(C22×C8).156C22 = C42.26C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).156C2^2 | 128,1991 |
(C22×C8).157C22 = C42.28C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).157C2^2 | 128,1993 |
(C22×C8).158C22 = C42.29C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).158C2^2 | 128,1994 |
(C22×C8).159C22 = D4×Q16 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).159C2^2 | 128,2018 |
(C22×C8).160C22 = D4⋊5Q16 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).160C2^2 | 128,2031 |
(C22×C8).161C22 = C42.465C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).161C2^2 | 128,2032 |
(C22×C8).162C22 = C42.467C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).162C2^2 | 128,2034 |
(C22×C8).163C22 = C42.470C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).163C2^2 | 128,2037 |
(C22×C8).164C22 = D4⋊5D8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).164C2^2 | 128,2066 |
(C22×C8).165C22 = D4⋊6Q16 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).165C2^2 | 128,2070 |
(C22×C8).166C22 = C24.10Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).166C2^2 | 128,587 |
(C22×C8).167C22 = C42.430D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).167C2^2 | 128,682 |
(C22×C8).168C22 = M4(2).10D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).168C2^2 | 128,783 |
(C22×C8).169C22 = M4(2).11D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).169C2^2 | 128,784 |
(C22×C8).170C22 = M4(2).12D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).170C2^2 | 128,795 |
(C22×C8).171C22 = M4(2).13D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).171C2^2 | 128,796 |
(C22×C8).172C22 = D8⋊8D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).172C2^2 | 128,918 |
(C22×C8).173C22 = D8.10D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).173C2^2 | 128,921 |
(C22×C8).174C22 = C23.19D8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).174C2^2 | 128,966 |
(C22×C8).175C22 = C23.20D8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).175C2^2 | 128,969 |
(C22×C8).176C22 = (C2×Q8)⋊17D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).176C2^2 | 128,1745 |
(C22×C8).177C22 = C42.443D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).177C2^2 | 128,1767 |
(C22×C8).178C22 = C42.18C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).178C2^2 | 128,1777 |
(C22×C8).179C22 = C42.19C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).179C2^2 | 128,1778 |
(C22×C8).180C22 = C42.447D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).180C2^2 | 128,1808 |
(C22×C8).181C22 = C42.20C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).181C2^2 | 128,1813 |
(C22×C8).182C22 = C42.21C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).182C2^2 | 128,1814 |
(C22×C8).183C22 = C24.115D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).183C2^2 | 128,1823 |
(C22×C8).184C22 = (C2×D4).301D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).184C2^2 | 128,1828 |
(C22×C8).185C22 = (C2×D4).302D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).185C2^2 | 128,1829 |
(C22×C8).186C22 = C24.123D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).186C2^2 | 128,1922 |
(C22×C8).187C22 = C4.162+ 1+4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).187C2^2 | 128,1933 |
(C22×C8).188C22 = C42.295D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).188C2^2 | 128,1979 |
(C22×C8).189C22 = C42.296D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).189C2^2 | 128,1980 |
(C22×C8).190C22 = C4.2- 1+4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).190C2^2 | 128,1989 |
(C22×C8).191C22 = C42.25C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).191C2^2 | 128,1990 |
(C22×C8).192C22 = D8⋊13D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).192C2^2 | 128,2015 |
(C22×C8).193C22 = SD16⋊11D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).193C2^2 | 128,2016 |
(C22×C8).194C22 = Q16⋊12D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).194C2^2 | 128,2017 |
(C22×C8).195C22 = Q16⋊13D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).195C2^2 | 128,2019 |
(C22×C8).196C22 = C42.485C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).196C2^2 | 128,2068 |
(C22×C8).197C22 = C42.486C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).197C2^2 | 128,2069 |
(C22×C8).198C22 = C42.488C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).198C2^2 | 128,2071 |
(C22×C8).199C22 = C42.489C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).199C2^2 | 128,2072 |
(C22×C8).200C22 = C42.490C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).200C2^2 | 128,2073 |
(C22×C8).201C22 = C42.491C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).201C2^2 | 128,2074 |
(C22×C8).202C22 = C8.11C42 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).202C2^2 | 128,115 |
(C22×C8).203C22 = C23.9D8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).203C2^2 | 128,116 |
(C22×C8).204C22 = C8.13C42 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).204C2^2 | 128,117 |
(C22×C8).205C22 = C8.C42 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).205C2^2 | 128,118 |
(C22×C8).206C22 = C8.2C42 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).206C2^2 | 128,119 |
(C22×C8).207C22 = M5(2).C4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).207C2^2 | 128,120 |
(C22×C8).208C22 = C8.4C42 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).208C2^2 | 128,121 |
(C22×C8).209C22 = C8.5C42 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).209C2^2 | 128,505 |
(C22×C8).210C22 = C8⋊C42 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).210C2^2 | 128,508 |
(C22×C8).211C22 = C8.6C42 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).211C2^2 | 128,510 |
(C22×C8).212C22 = C24.67D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).212C2^2 | 128,541 |
(C22×C8).213C22 = C24.9Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).213C2^2 | 128,543 |
(C22×C8).214C22 = (C2×D4).24Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).214C2^2 | 128,544 |
(C22×C8).215C22 = (C2×C8).103D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).215C2^2 | 128,545 |
(C22×C8).216C22 = C8○D4⋊C4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).216C2^2 | 128,546 |
(C22×C8).217C22 = C4○D4.4Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).217C2^2 | 128,547 |
(C22×C8).218C22 = C4○D4.5Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).218C2^2 | 128,548 |
(C22×C8).219C22 = C8.(C4⋊C4) | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).219C2^2 | 128,565 |
(C22×C8).220C22 = C42.26Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).220C2^2 | 128,579 |
(C22×C8).221C22 = C42.106D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).221C2^2 | 128,581 |
(C22×C8).222C22 = M4(2).5Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).222C2^2 | 128,683 |
(C22×C8).223C22 = M4(2).6Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).223C2^2 | 128,684 |
(C22×C8).224C22 = M4(2).27D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).224C2^2 | 128,685 |
(C22×C8).225C22 = M4(2).30D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).225C2^2 | 128,708 |
(C22×C8).226C22 = M4(2).31D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).226C2^2 | 128,709 |
(C22×C8).227C22 = M4(2).32D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).227C2^2 | 128,710 |
(C22×C8).228C22 = M4(2).33D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).228C2^2 | 128,711 |
(C22×C8).229C22 = C23.39D8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).229C2^2 | 128,871 |
(C22×C8).230C22 = C23.40D8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).230C2^2 | 128,872 |
(C22×C8).231C22 = C23.41D8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).231C2^2 | 128,873 |
(C22×C8).232C22 = C23.20SD16 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).232C2^2 | 128,875 |
(C22×C8).233C22 = C2×D8⋊2C4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).233C2^2 | 128,876 |
(C22×C8).234C22 = C23.13D8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).234C2^2 | 128,877 |
(C22×C8).235C22 = C2×M5(2)⋊C2 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).235C2^2 | 128,878 |
(C22×C8).236C22 = C2×C8.17D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).236C2^2 | 128,879 |
(C22×C8).237C22 = C23.21SD16 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).237C2^2 | 128,880 |
(C22×C8).238C22 = C2×C8.Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).238C2^2 | 128,886 |
(C22×C8).239C22 = M5(2)⋊3C4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).239C2^2 | 128,887 |
(C22×C8).240C22 = M5(2)⋊1C4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).240C2^2 | 128,891 |
(C22×C8).241C22 = M5(2).1C4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).241C2^2 | 128,893 |
(C22×C8).242C22 = C2×M4(2)⋊C4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).242C2^2 | 128,1642 |
(C22×C8).243C22 = C24.100D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).243C2^2 | 128,1643 |
(C22×C8).244C22 = C4○D4.7Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).244C2^2 | 128,1644 |
(C22×C8).245C22 = C4○D4.8Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).245C2^2 | 128,1645 |
(C22×C8).246C22 = C2×M4(2).C4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).246C2^2 | 128,1647 |
(C22×C8).247C22 = M4(2).29C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).247C2^2 | 128,1648 |
(C22×C8).248C22 = C42.277C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).248C2^2 | 128,1680 |
(C22×C8).249C22 = C42.278C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).249C2^2 | 128,1681 |
(C22×C8).250C22 = C42.279C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).250C2^2 | 128,1682 |
(C22×C8).251C22 = C42.280C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).251C2^2 | 128,1683 |
(C22×C8).252C22 = C42.281C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).252C2^2 | 128,1684 |
(C22×C8).253C22 = C2×C8.26D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).253C2^2 | 128,1686 |
(C22×C8).254C22 = M4(2)○D8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).254C2^2 | 128,1689 |
(C22×C8).255C22 = C2×C8⋊D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).255C2^2 | 128,1783 |
(C22×C8).256C22 = C2×C8⋊2D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).256C2^2 | 128,1784 |
(C22×C8).257C22 = C2×C8.D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).257C2^2 | 128,1785 |
(C22×C8).258C22 = C24.110D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).258C2^2 | 128,1786 |
(C22×C8).259C22 = M4(2)⋊15D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).259C2^2 | 128,1788 |
(C22×C8).260C22 = C8.D4⋊C2 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).260C2^2 | 128,1791 |
(C22×C8).261C22 = (C2×C8)⋊13D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).261C2^2 | 128,1792 |
(C22×C8).262C22 = (C2×C8)⋊14D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).262C2^2 | 128,1793 |
(C22×C8).263C22 = M4(2)⋊17D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).263C2^2 | 128,1795 |
(C22×C8).264C22 = C2×D4.3D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).264C2^2 | 128,1796 |
(C22×C8).265C22 = C2×D4.4D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).265C2^2 | 128,1797 |
(C22×C8).266C22 = C2×D4.5D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).266C2^2 | 128,1798 |
(C22×C8).267C22 = M4(2).10C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).267C2^2 | 128,1799 |
(C22×C8).268C22 = C2×C8⋊3D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).268C2^2 | 128,1880 |
(C22×C8).269C22 = C2×C8.2D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).269C2^2 | 128,1881 |
(C22×C8).270C22 = C42.247D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).270C2^2 | 128,1882 |
(C22×C8).271C22 = M4(2)⋊10D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).271C2^2 | 128,1886 |
(C22×C8).272C22 = M4(2)⋊11D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).272C2^2 | 128,1887 |
(C22×C8).273C22 = M4(2).20D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).273C2^2 | 128,1888 |
(C22×C8).274C22 = C2×C8⋊Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).274C2^2 | 128,1893 |
(C22×C8).275C22 = C42.252D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).275C2^2 | 128,1894 |
(C22×C8).276C22 = M4(2)⋊3Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).276C2^2 | 128,1895 |
(C22×C8).277C22 = M4(2)⋊4Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).277C2^2 | 128,1896 |
(C22×C8).278C22 = C42.390C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).278C2^2 | 128,1910 |
(C22×C8).279C22 = C42.391C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).279C2^2 | 128,1911 |
(C22×C8).280C22 = C42.257D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).280C2^2 | 128,1912 |
(C22×C8).281C22 = C42.258D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).281C2^2 | 128,1913 |
(C22×C8).282C22 = SD16⋊6D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).282C2^2 | 128,1998 |
(C22×C8).283C22 = SD16⋊8D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).283C2^2 | 128,2001 |
(C22×C8).284C22 = Q16⋊9D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).284C2^2 | 128,2002 |
(C22×C8).285C22 = Q16⋊10D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).285C2^2 | 128,2003 |
(C22×C8).286C22 = C42.57C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).286C2^2 | 128,2075 |
(C22×C8).287C22 = C42.58C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).287C2^2 | 128,2076 |
(C22×C8).288C22 = C42.59C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).288C2^2 | 128,2077 |
(C22×C8).289C22 = C42.60C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).289C2^2 | 128,2078 |
(C22×C8).290C22 = C42.61C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).290C2^2 | 128,2079 |
(C22×C8).291C22 = C42.62C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).291C2^2 | 128,2080 |
(C22×C8).292C22 = C42.63C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).292C2^2 | 128,2081 |
(C22×C8).293C22 = C42.64C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).293C2^2 | 128,2082 |
(C22×C8).294C22 = C2×C16⋊C22 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).294C2^2 | 128,2144 |
(C22×C8).295C22 = C2×Q32⋊C2 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).295C2^2 | 128,2145 |
(C22×C8).296C22 = D16⋊C22 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).296C2^2 | 128,2146 |
(C22×C8).297C22 = C22×C8.C22 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).297C2^2 | 128,2311 |
(C22×C8).298C22 = C2×Q8○D8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).298C2^2 | 128,2315 |
(C22×C8).299C22 = C16⋊D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).299C2^2 | 128,950 |
(C22×C8).300C22 = C16.D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).300C2^2 | 128,951 |
(C22×C8).301C22 = C16⋊2D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).301C2^2 | 128,952 |
(C22×C8).302C22 = C42.387C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).302C2^2 | 128,1907 |
(C22×C8).303C22 = C42.388C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).303C2^2 | 128,1908 |
(C22×C8).304C22 = C42.389C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).304C2^2 | 128,1909 |
(C22×C8).305C22 = C42.43C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).305C2^2 | 128,2040 |
(C22×C8).306C22 = C42.44C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).306C2^2 | 128,2041 |
(C22×C8).307C22 = C42.47C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).307C2^2 | 128,2044 |
(C22×C8).308C22 = C42.48C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).308C2^2 | 128,2045 |
(C22×C8).309C22 = C42.49C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).309C2^2 | 128,2046 |
(C22×C8).310C22 = C42.50C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).310C2^2 | 128,2047 |
(C22×C8).311C22 = C24.159D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).311C2^2 | 128,585 |
(C22×C8).312C22 = C24.71D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).312C2^2 | 128,586 |
(C22×C8).313C22 = D4⋊(C4⋊C4) | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).313C2^2 | 128,596 |
(C22×C8).314C22 = Q8⋊C4⋊C4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).314C2^2 | 128,597 |
(C22×C8).315C22 = C42.30Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).315C2^2 | 128,680 |
(C22×C8).316C22 = C42.31Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).316C2^2 | 128,681 |
(C22×C8).317C22 = C23⋊3SD16 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).317C2^2 | 128,732 |
(C22×C8).318C22 = (C2×C4)⋊3SD16 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).318C2^2 | 128,745 |
(C22×C8).319C22 = (C2×C8)⋊20D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).319C2^2 | 128,746 |
(C22×C8).320C22 = (C2×C8).41D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).320C2^2 | 128,747 |
(C22×C8).321C22 = M4(2).5D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).321C2^2 | 128,751 |
(C22×C8).322C22 = C4⋊C4.97D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).322C2^2 | 128,778 |
(C22×C8).323C22 = (C2×C8)⋊Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).323C2^2 | 128,790 |
(C22×C8).324C22 = C2.(C8⋊Q8) | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).324C2^2 | 128,791 |
(C22×C8).325C22 = C24.89D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).325C2^2 | 128,809 |
(C22×C8).326C22 = (C2×C8).165D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).326C2^2 | 128,811 |
(C22×C8).327C22 = C2.(C8⋊3Q8) | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).327C2^2 | 128,816 |
(C22×C8).328C22 = C4.(C4⋊Q8) | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).328C2^2 | 128,820 |
(C22×C8).329C22 = M4(2).2Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).329C2^2 | 128,822 |
(C22×C8).330C22 = (C2×C8).168D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).330C2^2 | 128,824 |
(C22×C8).331C22 = (C2×C8).169D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).331C2^2 | 128,826 |
(C22×C8).332C22 = (C2×C8).170D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).332C2^2 | 128,828 |
(C22×C8).333C22 = (C2×C8).171D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).333C2^2 | 128,829 |
(C22×C8).334C22 = C2×Q8⋊D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).334C2^2 | 128,1730 |
(C22×C8).335C22 = C2×D4.7D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).335C2^2 | 128,1733 |
(C22×C8).336C22 = (C2×Q8)⋊16D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).336C2^2 | 128,1742 |
(C22×C8).337C22 = C2×D4.D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).337C2^2 | 128,1762 |
(C22×C8).338C22 = C2×C4⋊SD16 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).338C2^2 | 128,1764 |
(C22×C8).339C22 = C2×Q8.D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).339C2^2 | 128,1766 |
(C22×C8).340C22 = C42.15C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).340C2^2 | 128,1774 |
(C22×C8).341C22 = C42.16C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).341C2^2 | 128,1775 |
(C22×C8).342C22 = C2×D4⋊2Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).342C2^2 | 128,1803 |
(C22×C8).343C22 = C2×Q8⋊Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).343C2^2 | 128,1805 |
(C22×C8).344C22 = C2×Q8.Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).344C2^2 | 128,1807 |
(C22×C8).345C22 = C42.23C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).345C2^2 | 128,1816 |
(C22×C8).346C22 = C2×C23.47D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).346C2^2 | 128,1818 |
(C22×C8).347C22 = C2×C23.20D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).347C2^2 | 128,1820 |
(C22×C8).348C22 = C2×C23.46D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).348C2^2 | 128,1821 |
(C22×C8).349C22 = (C2×D4).304D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).349C2^2 | 128,1831 |
(C22×C8).350C22 = C4.192+ 1+4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).350C2^2 | 128,1936 |
(C22×C8).351C22 = C42.294D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).351C2^2 | 128,1978 |
(C22×C8).352C22 = C42.27C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).352C2^2 | 128,1992 |
(C22×C8).353C22 = C42.30C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).353C2^2 | 128,1995 |
(C22×C8).354C22 = D4⋊8SD16 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).354C2^2 | 128,2030 |
(C22×C8).355C22 = C42.466C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).355C2^2 | 128,2033 |
(C22×C8).356C22 = C42.468C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).356C2^2 | 128,2035 |
(C22×C8).357C22 = C42.469C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).357C2^2 | 128,2036 |
(C22×C8).358C22 = D4⋊9SD16 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).358C2^2 | 128,2067 |
(C22×C8).359C22 = C42.385C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).359C2^2 | 128,1905 |
(C22×C8).360C22 = C42.386C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).360C2^2 | 128,1906 |
(C22×C8).361C22 = C42.41C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).361C2^2 | 128,2038 |
(C22×C8).362C22 = C42.42C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).362C2^2 | 128,2039 |
(C22×C8).363C22 = C42.51C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).363C2^2 | 128,2048 |
(C22×C8).364C22 = C42.52C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).364C2^2 | 128,2049 |
(C22×C8).365C22 = C42.55C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).365C2^2 | 128,2052 |
(C22×C8).366C22 = C42.56C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).366C2^2 | 128,2053 |
(C22×C8).367C22 = C42.2C8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).367C2^2 | 128,107 |
(C22×C8).368C22 = M5(2)⋊C4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).368C2^2 | 128,109 |
(C22×C8).369C22 = M4(2).C8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).369C2^2 | 128,110 |
(C22×C8).370C22 = C23.28C42 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).370C2^2 | 128,460 |
(C22×C8).371C22 = C23.29C42 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).371C2^2 | 128,461 |
(C22×C8).372C22 = C24.152D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).372C2^2 | 128,468 |
(C22×C8).373C22 = C24.7Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).373C2^2 | 128,470 |
(C22×C8).374C22 = C43.C2 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).374C2^2 | 128,477 |
(C22×C8).375C22 = (C4×C8)⋊12C4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).375C2^2 | 128,478 |
(C22×C8).376C22 = C8.16C42 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).376C2^2 | 128,479 |
(C22×C8).377C22 = C42.378D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).377C2^2 | 128,481 |
(C22×C8).378C22 = C23.36C42 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).378C2^2 | 128,484 |
(C22×C8).379C22 = C23.5C42 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).379C2^2 | 128,489 |
(C22×C8).380C22 = D4⋊C42 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).380C2^2 | 128,494 |
(C22×C8).381C22 = Q8⋊C42 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).381C2^2 | 128,495 |
(C22×C8).382C22 = D4.3C42 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).382C2^2 | 128,497 |
(C22×C8).383C22 = C43.7C2 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).383C2^2 | 128,499 |
(C22×C8).384C22 = C4⋊C8⋊13C4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).384C2^2 | 128,502 |
(C22×C8).385C22 = C42.24Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).385C2^2 | 128,568 |
(C22×C8).386C22 = C42.104D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).386C2^2 | 128,570 |
(C22×C8).387C22 = M4(2).42D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).387C2^2 | 128,598 |
(C22×C8).388C22 = M4(2).43D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).388C2^2 | 128,608 |
(C22×C8).389C22 = C24.75D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).389C2^2 | 128,626 |
(C22×C8).390C22 = C24.76D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).390C2^2 | 128,627 |
(C22×C8).391C22 = M4(2).48D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).391C2^2 | 128,639 |
(C22×C8).392C22 = M4(2).49D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).392C2^2 | 128,640 |
(C22×C8).393C22 = M4(2).3Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).393C2^2 | 128,654 |
(C22×C8).394C22 = M4(2).24D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).394C2^2 | 128,661 |
(C22×C8).395C22 = C4.10D4⋊3C4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).395C2^2 | 128,662 |
(C22×C8).396C22 = C4.D4⋊3C4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).396C2^2 | 128,663 |
(C22×C8).397C22 = C2.(C8⋊D4) | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).397C2^2 | 128,667 |
(C22×C8).398C22 = C2.(C8⋊2D4) | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).398C2^2 | 128,668 |
(C22×C8).399C22 = C42.107D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).399C2^2 | 128,670 |
(C22×C8).400C22 = C4.(C4×Q8) | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).400C2^2 | 128,675 |
(C22×C8).401C22 = C8⋊(C4⋊C4) | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).401C2^2 | 128,676 |
(C22×C8).402C22 = C42.28Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).402C2^2 | 128,678 |
(C22×C8).403C22 = C42.110D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).403C2^2 | 128,691 |
(C22×C8).404C22 = C42.111D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).404C2^2 | 128,692 |
(C22×C8).405C22 = C42.112D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).405C2^2 | 128,693 |
(C22×C8).406C22 = (C2×Q16)⋊10C4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).406C2^2 | 128,703 |
(C22×C8).407C22 = (C2×D8)⋊10C4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).407C2^2 | 128,704 |
(C22×C8).408C22 = C8⋊(C22⋊C4) | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).408C2^2 | 128,705 |
(C22×C8).409C22 = C42.116D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).409C2^2 | 128,707 |
(C22×C8).410C22 = C42.124D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).410C2^2 | 128,724 |
(C22×C8).411C22 = C42.125D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).411C2^2 | 128,725 |
(C22×C8).412C22 = C2×C16⋊C4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).412C2^2 | 128,841 |
(C22×C8).413C22 = C8.23C42 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).413C2^2 | 128,842 |
(C22×C8).414C22 = (C2×D4).5C8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).414C2^2 | 128,845 |
(C22×C8).415C22 = C2×C23.C8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).415C2^2 | 128,846 |
(C22×C8).416C22 = M5(2).19C22 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).416C2^2 | 128,847 |
(C22×C8).417C22 = M5(2)⋊12C22 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).417C2^2 | 128,849 |
(C22×C8).418C22 = M4(2).1C8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).418C2^2 | 128,885 |
(C22×C8).419C22 = C8.12M4(2) | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).419C2^2 | 128,896 |
(C22×C8).420C22 = C16⋊6D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).420C2^2 | 128,901 |
(C22×C8).421C22 = M4(2)○2M4(2) | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).421C2^2 | 128,1605 |
(C22×C8).422C22 = D4.5C42 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).422C2^2 | 128,1607 |
(C22×C8).423C22 = C2×C23.38D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).423C2^2 | 128,1626 |
(C22×C8).424C22 = C2×C23.36D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).424C2^2 | 128,1627 |
(C22×C8).425C22 = 2- 1+4⋊4C4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).425C2^2 | 128,1630 |
(C22×C8).426C22 = C2×C4⋊M4(2) | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).426C2^2 | 128,1635 |
(C22×C8).427C22 = C42.257C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).427C2^2 | 128,1637 |
(C22×C8).428C22 = C42.674C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).428C2^2 | 128,1638 |
(C22×C8).429C22 = C2×C42.6C4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).429C2^2 | 128,1650 |
(C22×C8).430C22 = C42.261C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).430C2^2 | 128,1655 |
(C22×C8).431C22 = C42.262C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).431C2^2 | 128,1656 |
(C22×C8).432C22 = C42.678C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).432C2^2 | 128,1657 |
(C22×C8).433C22 = C42.681C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).433C2^2 | 128,1663 |
(C22×C8).434C22 = C42.266C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).434C2^2 | 128,1664 |
(C22×C8).435C22 = M4(2)⋊23D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).435C2^2 | 128,1667 |
(C22×C8).436C22 = C2×SD16⋊C4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).436C2^2 | 128,1672 |
(C22×C8).437C22 = C2×Q16⋊C4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).437C2^2 | 128,1673 |
(C22×C8).438C22 = C2×D8⋊C4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).438C2^2 | 128,1674 |
(C22×C8).439C22 = C42.383D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).439C2^2 | 128,1675 |
(C22×C8).440C22 = C42.275C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).440C2^2 | 128,1678 |
(C22×C8).441C22 = C42.276C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).441C2^2 | 128,1679 |
(C22×C8).442C22 = C42.283C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).442C2^2 | 128,1687 |
(C22×C8).443C22 = C2×C8⋊4Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).443C2^2 | 128,1691 |
(C22×C8).444C22 = C42.287C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).444C2^2 | 128,1693 |
(C22×C8).445C22 = M4(2)⋊9Q8 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).445C2^2 | 128,1694 |
(C22×C8).446C22 = C42.292C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).446C2^2 | 128,1699 |
(C22×C8).447C22 = C42.293C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).447C2^2 | 128,1700 |
(C22×C8).448C22 = C42.294C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).448C2^2 | 128,1701 |
(C22×C8).449C22 = D4⋊6M4(2) | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).449C2^2 | 128,1702 |
(C22×C8).450C22 = C42.300C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).450C2^2 | 128,1712 |
(C22×C8).451C22 = C42.301C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).451C2^2 | 128,1713 |
(C22×C8).452C22 = C42.698C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).452C2^2 | 128,1721 |
(C22×C8).453C22 = D4⋊8M4(2) | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).453C2^2 | 128,1722 |
(C22×C8).454C22 = C42.307C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).454C2^2 | 128,1724 |
(C22×C8).455C22 = C42.308C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).455C2^2 | 128,1725 |
(C22×C8).456C22 = C42.310C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).456C2^2 | 128,1727 |
(C22×C8).457C22 = C2×C42.28C22 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).457C2^2 | 128,1864 |
(C22×C8).458C22 = C2×C42.29C22 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).458C2^2 | 128,1865 |
(C22×C8).459C22 = C2×C42.30C22 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).459C2^2 | 128,1866 |
(C22×C8).460C22 = C42.239D4 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).460C2^2 | 128,1867 |
(C22×C8).461C22 = C42.366C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).461C2^2 | 128,1868 |
(C22×C8).462C22 = C42.367C23 | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).462C2^2 | 128,1869 |
(C22×C8).463C22 = Q8○M5(2) | φ: C22/C1 → C22 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).463C2^2 | 128,2139 |
(C22×C8).464C22 = C2×C22.7C42 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).464C2^2 | 128,459 |
(C22×C8).465C22 = C2×C22.4Q16 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).465C2^2 | 128,466 |
(C22×C8).466C22 = C24.132D4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).466C2^2 | 128,467 |
(C22×C8).467C22 = C2×C4.C42 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).467C2^2 | 128,469 |
(C22×C8).468C22 = C42⋊4C8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).468C2^2 | 128,476 |
(C22×C8).469C22 = C4×C22⋊C8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).469C2^2 | 128,480 |
(C22×C8).470C22 = C42.379D4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).470C2^2 | 128,482 |
(C22×C8).471C22 = C23.17C42 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).471C2^2 | 128,485 |
(C22×C8).472C22 = C4×D4⋊C4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).472C2^2 | 128,492 |
(C22×C8).473C22 = C4×Q8⋊C4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).473C2^2 | 128,493 |
(C22×C8).474C22 = Q8.C42 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).474C2^2 | 128,496 |
(C22×C8).475C22 = C4×C4⋊C8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).475C2^2 | 128,498 |
(C22×C8).476C22 = C42.45Q8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).476C2^2 | 128,500 |
(C22×C8).477C22 = C4⋊C8⋊14C4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).477C2^2 | 128,503 |
(C22×C8).478C22 = C42.55Q8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).478C2^2 | 128,566 |
(C22×C8).479C22 = C42.56Q8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).479C2^2 | 128,567 |
(C22×C8).480C22 = C42.322D4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).480C2^2 | 128,569 |
(C22×C8).481C22 = C24.135D4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).481C2^2 | 128,624 |
(C22×C8).482C22 = C23.23D8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).482C2^2 | 128,625 |
(C22×C8).483C22 = C2.(C8⋊8D4) | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).483C2^2 | 128,665 |
(C22×C8).484C22 = C2.(C8⋊7D4) | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).484C2^2 | 128,666 |
(C22×C8).485C22 = C42.428D4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).485C2^2 | 128,669 |
(C22×C8).486C22 = C8⋊7(C4⋊C4) | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).486C2^2 | 128,673 |
(C22×C8).487C22 = C8⋊5(C4⋊C4) | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).487C2^2 | 128,674 |
(C22×C8).488C22 = C42.62Q8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).488C2^2 | 128,677 |
(C22×C8).489C22 = C42.431D4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).489C2^2 | 128,688 |
(C22×C8).490C22 = C42.432D4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).490C2^2 | 128,689 |
(C22×C8).491C22 = C42.433D4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).491C2^2 | 128,690 |
(C22×C8).492C22 = (C2×C4)⋊9SD16 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).492C2^2 | 128,700 |
(C22×C8).493C22 = (C2×C4)⋊6Q16 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).493C2^2 | 128,701 |
(C22×C8).494C22 = (C2×C4)⋊6D8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).494C2^2 | 128,702 |
(C22×C8).495C22 = C42.326D4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).495C2^2 | 128,706 |
(C22×C8).496C22 = C42.436D4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).496C2^2 | 128,722 |
(C22×C8).497C22 = C42.437D4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).497C2^2 | 128,723 |
(C22×C8).498C22 = C24.5C8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).498C2^2 | 128,844 |
(C22×C8).499C22 = C42.13C8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).499C2^2 | 128,894 |
(C22×C8).500C22 = C42.6C8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).500C2^2 | 128,895 |
(C22×C8).501C22 = D4×C16 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).501C2^2 | 128,899 |
(C22×C8).502C22 = C16⋊9D4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).502C2^2 | 128,900 |
(C22×C8).503C22 = C22×Q8⋊C4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).503C2^2 | 128,1623 |
(C22×C8).504C22 = C22×C4⋊C8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).504C2^2 | 128,1634 |
(C22×C8).505C22 = C2×C42.6C22 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).505C2^2 | 128,1636 |
(C22×C8).506C22 = C2×C42.12C4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).506C2^2 | 128,1649 |
(C22×C8).507C22 = C2×C42.7C22 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).507C2^2 | 128,1651 |
(C22×C8).508C22 = C42.260C23 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).508C2^2 | 128,1654 |
(C22×C8).509C22 = C2×C8⋊6D4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).509C2^2 | 128,1660 |
(C22×C8).510C22 = C2×C4×D8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).510C2^2 | 128,1668 |
(C22×C8).511C22 = C2×C4×SD16 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).511C2^2 | 128,1669 |
(C22×C8).512C22 = C2×C4×Q16 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).512C2^2 | 128,1670 |
(C22×C8).513C22 = C4×C4○D8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).513C2^2 | 128,1671 |
(C22×C8).514C22 = C42.286C23 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).514C2^2 | 128,1692 |
(C22×C8).515C22 = C8×C4○D4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).515C2^2 | 128,1696 |
(C22×C8).516C22 = C42.291C23 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).516C2^2 | 128,1698 |
(C22×C8).517C22 = C2×C4.4D8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).517C2^2 | 128,1860 |
(C22×C8).518C22 = C2×C4.SD16 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).518C2^2 | 128,1861 |
(C22×C8).519C22 = C2×C42.78C22 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).519C2^2 | 128,1862 |
(C22×C8).520C22 = C42.355D4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).520C2^2 | 128,1863 |
(C22×C8).521C22 = C8.7C42 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).521C2^2 | 128,112 |
(C22×C8).522C22 = C4×C2.D8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).522C2^2 | 128,507 |
(C22×C8).523C22 = C23.22D8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).523C2^2 | 128,540 |
(C22×C8).524C22 = C42.59Q8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).524C2^2 | 128,577 |
(C22×C8).525C22 = C42.60Q8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).525C2^2 | 128,578 |
(C22×C8).526C22 = C2×C2.D16 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).526C2^2 | 128,868 |
(C22×C8).527C22 = C2×C2.Q32 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).527C2^2 | 128,869 |
(C22×C8).528C22 = C2×C16⋊3C4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).528C2^2 | 128,888 |
(C22×C8).529C22 = C2×C16⋊4C4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).529C2^2 | 128,889 |
(C22×C8).530C22 = C16⋊7D4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).530C2^2 | 128,947 |
(C22×C8).531C22 = C16.19D4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).531C2^2 | 128,948 |
(C22×C8).532C22 = C16⋊8D4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).532C2^2 | 128,949 |
(C22×C8).533C22 = C22×C2.D8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).533C2^2 | 128,1640 |
(C22×C8).534C22 = C2×C8.18D4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).534C2^2 | 128,1781 |
(C22×C8).535C22 = C2×C8⋊4D4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).535C2^2 | 128,1876 |
(C22×C8).536C22 = C2×C4⋊Q16 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).536C2^2 | 128,1877 |
(C22×C8).537C22 = C2×C8.12D4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).537C2^2 | 128,1878 |
(C22×C8).538C22 = C2×C8⋊2Q8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).538C2^2 | 128,1891 |
(C22×C8).539C22 = C42.366D4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).539C2^2 | 128,1901 |
(C22×C8).540C22 = C42.367D4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).540C2^2 | 128,1902 |
(C22×C8).541C22 = C22×D16 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).541C2^2 | 128,2140 |
(C22×C8).542C22 = C22×SD32 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).542C2^2 | 128,2141 |
(C22×C8).543C22 = C22×Q32 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).543C2^2 | 128,2142 |
(C22×C8).544C22 = C23×Q16 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).544C2^2 | 128,2308 |
(C22×C8).545C22 = C8.8C42 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).545C2^2 | 128,113 |
(C22×C8).546C22 = C8.9C42 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).546C2^2 | 128,114 |
(C22×C8).547C22 = C8.14C42 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).547C2^2 | 128,504 |
(C22×C8).548C22 = C4×C8.C4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).548C2^2 | 128,509 |
(C22×C8).549C22 = C24.19Q8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).549C2^2 | 128,542 |
(C22×C8).550C22 = C42.324D4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).550C2^2 | 128,580 |
(C22×C8).551C22 = C23.24D8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).551C2^2 | 128,870 |
(C22×C8).552C22 = C2×D8.C4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).552C2^2 | 128,874 |
(C22×C8).553C22 = C23.25D8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).553C2^2 | 128,890 |
(C22×C8).554C22 = C2×C8.4Q8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).554C2^2 | 128,892 |
(C22×C8).555C22 = C22×C8.C4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).555C2^2 | 128,1646 |
(C22×C8).556C22 = C2×C8○D8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).556C2^2 | 128,1685 |
(C22×C8).557C22 = C24.144D4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).557C2^2 | 128,1782 |
(C22×C8).558C22 = C42.360D4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).558C2^2 | 128,1879 |
(C22×C8).559C22 = C42.364D4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).559C2^2 | 128,1892 |
(C22×C8).560C22 = C2×C4○D16 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).560C2^2 | 128,2143 |
(C22×C8).561C22 = C4×C4.Q8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).561C2^2 | 128,506 |
(C22×C8).562C22 = C24.133D4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).562C2^2 | 128,539 |
(C22×C8).563C22 = C42.58Q8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).563C2^2 | 128,576 |
(C22×C8).564C22 = C22×C4.Q8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).564C2^2 | 128,1639 |
(C22×C8).565C22 = C2×C23.25D4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).565C2^2 | 128,1641 |
(C22×C8).566C22 = C2×C8⋊5D4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).566C2^2 | 128,1875 |
(C22×C8).567C22 = C2×C8⋊3Q8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).567C2^2 | 128,1889 |
(C22×C8).568C22 = C2×C8.5Q8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).568C2^2 | 128,1890 |
(C22×C8).569C22 = C42.365D4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).569C2^2 | 128,1899 |
(C22×C8).570C22 = C42.308D4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).570C2^2 | 128,1900 |
(C22×C8).571C22 = C42.7C8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).571C2^2 | 128,108 |
(C22×C8).572C22 = M5(2)⋊7C4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).572C2^2 | 128,111 |
(C22×C8).573C22 = C4×C8⋊C4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).573C2^2 | 128,457 |
(C22×C8).574C22 = C2.C43 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).574C2^2 | 128,458 |
(C22×C8).575C22 = C4×M5(2) | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).575C2^2 | 128,839 |
(C22×C8).576C22 = C16○2M5(2) | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).576C2^2 | 128,840 |
(C22×C8).577C22 = C2×D4.C8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).577C2^2 | 128,848 |
(C22×C8).578C22 = C4⋊M5(2) | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).578C2^2 | 128,882 |
(C22×C8).579C22 = C4⋊C4.7C8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).579C2^2 | 128,883 |
(C22×C8).580C22 = C2×C8.C8 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).580C2^2 | 128,884 |
(C22×C8).581C22 = C22×C8⋊C4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).581C2^2 | 128,1602 |
(C22×C8).582C22 = C2×C4×M4(2) | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).582C2^2 | 128,1603 |
(C22×C8).583C22 = C2×C8○2M4(2) | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).583C2^2 | 128,1604 |
(C22×C8).584C22 = C4×C8○D4 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).584C2^2 | 128,1606 |
(C22×C8).585C22 = C42.290C23 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).585C2^2 | 128,1697 |
(C22×C8).586C22 = C22×M5(2) | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).586C2^2 | 128,2137 |
(C22×C8).587C22 = C2×D4○C16 | φ: C22/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).587C2^2 | 128,2138 |
(C22×C8).588C22 = C22.7M5(2) | central extension (φ=1) | 128 | | (C2^2xC8).588C2^2 | 128,106 |
(C22×C8).589C22 = C8×C22⋊C4 | central extension (φ=1) | 64 | | (C2^2xC8).589C2^2 | 128,483 |
(C22×C8).590C22 = C8×C4⋊C4 | central extension (φ=1) | 128 | | (C2^2xC8).590C2^2 | 128,501 |
(C22×C8).591C22 = C2×C16⋊5C4 | central extension (φ=1) | 128 | | (C2^2xC8).591C2^2 | 128,838 |
(C22×C8).592C22 = C2×C22⋊C16 | central extension (φ=1) | 64 | | (C2^2xC8).592C2^2 | 128,843 |
(C22×C8).593C22 = C2×C4⋊C16 | central extension (φ=1) | 128 | | (C2^2xC8).593C2^2 | 128,881 |
(C22×C8).594C22 = Q8×C2×C8 | central extension (φ=1) | 128 | | (C2^2xC8).594C2^2 | 128,1690 |